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ABSTRACT

Internal atmospheric variability fundamentally limits predictability of climate and obscures evidence of anthropo-

genic climate change regionally and on time scales of up to a few decades. Dynamical adjustment techniques estimate

and subsequently remove the influence of atmospheric circulation variability on temperature or precipitation. The

residual component is expected to contain the thermodynamical signal of the externally forced response but with less

circulation-induced noise. Existing techniques have led to important insights into recent trends in regional (hydro-)

climate and their drivers, but the variance explained by circulation is often low. Here, we develop a novel dynamical

adjustment technique by implementing principles from statistical learning. We demonstrate in an ensemble of Com-

munity Earth System Model (CESM) simulations that statistical learning methods, such as regularized linear models,

establish a clearer relationship between circulation variability and atmospheric target variables, and need relatively

short periods of record for training (around 30 years). Themethod accounts for, on average, 83%and 78%ofEuropean

monthly winter temperature and precipitation variability at gridcell level, and around 80%of globalmean temperature

and hemispheric precipitation variability. We show that the residuals retain forced thermodynamical contributions to

temperature and precipitation variability. Accurate estimates of the total forced response can thus be recovered as-

suming that forced circulation changes are gradual over time. Overall, forced climate response estimates can be

extracted at regional or global scales from approximately 3–5 times fewer ensemble members, or even a single re-

alization, using statistical learning techniques. We anticipate the technique will contribute to reducing uncertainties

around internal variability and facilitating climate change detection and attribution.

1. Introduction

Climate resilience hinges on anticipating externally

forced changes in the climate system, which are often

challenging to distinguish from internal variability or

‘‘climate noise’’ on local to regional scales or on time

scales up to a few decades (Madden 1976; Schneider

and Kinter 1994; Deser et al. 2012a,b). Internal vari-

ability is a dominant source of uncertainty in near-term

Denotes content that is immediately available upon publica-

tion as open access.

Supplemental information related to this paper is available at the

Journals Online website: https://doi.org/10.1175/JCLI-D-18-0882.s1.

Corresponding author: Sebastian Sippel, sebastian.sippel@

env.ethz.ch

1 SEPTEMBER 2019 S I P PEL ET AL . 5677

DOI: 10.1175/JCLI-D-18-0882.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/JCLI-D-18-0882.s1
mailto:sebastian.sippel@env.ethz.ch
mailto:sebastian.sippel@env.ethz.ch
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


www.manaraa.com

regional climate predictions (Hawkins and Sutton 2009),

and hinders detection and attribution studies by re-

ducing signal-to-noise ratios and thus potential pre-

dictability of externally driven changes in the climate

system (Stott et al. 2000; Lambert et al. 2004).

Sometimes referred to as the irreducible uncertainty

of prediction, internal variability can be quantified by

repeatedly running the same climate model, subject to

the same external forcing, from slightly different initial

atmospheric states (i.e., in an initial condition large en-

semble; Deser et al. 2014; Kay et al. 2015). In a large

ensemble, it is common practice to estimate a climate

variable’s total forced response, defined as the variable’s

total response to external forcing, by averaging across

the full set of realizations. However, with only a single,

externally forced realization of the climate system (i.e.,

the real world), disentangling forced responses from

internal variability requires a different approach.

‘‘Dynamical adjustment’’ techniques have been de-

veloped with the ultimate goal of removing the esti-

mated influence of internal atmospheric circulation

variability on target climate variables in the observa-

tional record or in models (Wallace et al. 2012; Deser

et al. 2016; Smoliak et al. 2015; Saffioti et al. 2016). This

research followed upon a large suite of earlier studies

aiming to understand the relationship betweenmodes of

internal atmospheric variability and temperature or

precipitation (Wallace et al. 1995; Thompson et al. 2000;

Compo and Sardeshmukh 2010; Foster and Rahmstorf

2011; Iles and Hegerl 2017). Conceptually, variability

in a target climate variablemight be seen as a realization

of internal variability that is superimposed upon the

response to external forcing (Wallace et al. 1995; Deser

et al. 2016). External forcing could either affect the

target variable thermodynamically (‘‘forced thermody-

namical component,’’ which for our purposes means due

to the warming itself, i.e., related to energy balance

changes), or it could impose changes upon the atmo-

spheric circulation that affect the target variable dy-

namically [‘‘forced dynamical component’’; see, e.g.,

Wallace et al. (1995), and illustrated in Fig. 1]. To ex-

plain projected changes in the global hydrologic cycle,

both thermodynamical and dynamical changes (such

as a poleward shift of midlatitude storm tracks; Yin

2005; Perlwitz et al. 2017) are typically invoked (Emori

and Brown 2005; Seager et al. 2010; He and Soden 2017).

Evidence for forced changes in key climate variables

such as temperature, and some precipitation character-

istics, is unequivocal in the historical record. In contrast,

historical and projected changes induced by atmo-

spheric circulation are typically more uncertain in both

observations and models (Shepherd 2014; Xie et al.

2015; Collins et al. 2018).

The fundamental idea of dynamical adjustment is to

derive an estimate of the circulation-induced contribu-

tion to variability in a target climate variable, such as

temperature or precipitation (Fig. 1). Subsequently, the

estimate is used to obtain a residual time series, that is,

the component of the target climate variable’s variabil-

ity that cannot be explained by circulation. The resid-

uals are expected to contain forced thermodynamical

components (Deser et al. 2016). An estimate of the

total forced response (i.e., including forced circulation

changes) could be obtained if one assumes that forced

circulation components are reasonably smooth in time

(cf. section 2b), or by relying on simulated forced cir-

culation changes (e.g., Deser et al. 2016). Yet, the key

step in dynamical adjustment is to estimate the relation-

ship between atmospheric circulation and a target climate

variable. Accordingly, an improved statistical estimate

of the circulation-induced contribution would translate

into a higher signal-to-noise ratio in the residual (Smoliak

et al. 2015). Different dynamical adjustment methods,

among them circulation analog techniques (Deser et al.

2016; Merrifield et al. 2017; Lehner et al. 2017) or

regression-based approaches (Smoliak et al. 2015; Saffioti

et al. 2016), are different ways to approach the statistical

estimation step.

FIG. 1. Conceptual illustration of causal relationships assumed

by dynamical adjustment techniques. External forcing causes a

thermodynamical response in the target variable Y, assumed to be

distinct from random internal variability that affects Y through

circulation anomaly patterns (e.g., sea level pressure anomalies).

The residuals of a regression of Y on sea level pressure anomalies

reflect a ‘‘noise-filtered’’ response to external forcing. The total re-

sponse to external forcing (forced thermodynamical and dynamical)

may be revealed through the residuals of a regression of Y on

SLPanom with the external influence on SLPanom removed.

5678 JOURNAL OF CL IMATE VOLUME 32



www.manaraa.com

The application of dynamical adjustment techniques has

led to important insights into the origins and drivers of

trends in hydroclimatic variables. For example, Wallace

et al. (1995) identified that nearly half of the observed

Northern Hemisphere winter surface air temperature

(SAT) variance in the twentieth century is attributable to a

‘‘cold ocean, warm land’’ spatial pattern that occurs ran-

domly over time and was therefore not necessarily asso-

ciated with external forcing. Foster and Rahmstorf (2011)

showed that a reevaluation of global temperature trends

by adjusting for the influence of known factors such as

ENSO, volcanic aerosols, and solar variability yields a

more precise estimate of the global warming signal in the

residual time series. Deser et al. (2016) found that after

accounting for circulation-induced variability, SAT trends

in a large ensemble of model simulations are closer to the

model’s total forced response. Similarly, observed cooling

trends in SAT at the local scale, for instance, in Switzer-

land, can be reconciled with the simulated total forced

response when atmospheric circulation is accounted for

(Saffioti et al. 2015, 2016). Furthermore, dynamical ad-

justment advances the time of emergence of externally

forced signals (Deser et al. 2016; Lehner et al. 2017), and

consequently could facilitate detection and attribution.

Nonetheless, residual time series after accounting for cir-

culation effects cannot be seen as a pure estimate of the

imprint of external forcing (Smoliak et al. 2015). This is

because residual variability might still contain other sour-

ces of variability such as land–atmosphere feedbacks

(Merrifield et al. 2017) or effects related to land surface

initial conditions (Lehner et al. 2017).

Dynamical adjustment of precipitation is more chal-

lenging than for temperature (Saffioti et al. 2016) because

precipitation more spatially heterogeneous and thus less

predictable from circulation. In addition, precipitation

depends on location and orography (Houze 2012), and in

some regions, forced precipitation changes are driven by

atmospheric circulation (Yin 2005; He and Soden 2017;

Siler et al. 2019). Nonetheless, a large fraction of pre-

cipitation variability in Europe and North America is re-

lated to internal variability in atmospheric circulation

(Saffioti et al. 2016; Fereday et al. 2018; Lehner et al. 2018;

Guo et al. 2019). Fereday et al. (2018) show that the ma-

jority of projection uncertainty for European winter pre-

cipitation is associated with the models’ atmospheric

circulation response to external forcing.

The objective of the present study is to incorporate sta-

tistical learning principles into the framework of dynamical

adjustment. We evaluate whether statistical learning can

improve upon existing techniques. Themanuscript is set up

as follows:

We frame dynamical adjustment and its assumptions

in the context of statistical learning (sections 2a and 2b)

and illustrate a candidate statistical learning technique

for dynamical adjustment (‘‘regularized linear models,’’

section 2c). Sections 3a–3c detail the study’s data and

experimental setup. In section 4a, we evaluate the per-

formance of statistical techniques in estimating circulation-

induced components of temperature and precipitation

variability. Next, we evaluate the consistency of the re-

sidual, ‘‘dynamically adjusted’’ trends in forced model

simulations inEurope against themodel’s forced response

(section 4b) and illustrate a simple partitioning of the

underlying thermodynamical and circulation-induced

components of the forced response. Last, we apply and

evaluate our methodology at the global scale (section 4c).

2. Dynamical adjustment as a statistical learning
problem

In this section, we revisit dynamical adjustment in

order to conceptualize it as a statistical learning problem

(sections 2a and 2b, represented schematically in Fig. 1),

and then introduce a specific set of statistical learning

techniques to apply (section 2c).

a. Isolating the thermodynamical component of the
forced response

Variations in atmospheric circulation and associated

variations [e.g., in sea level pressure (SLP)] drive

weather variability, for instance, through different ad-

vective flow regimes, extratropical cyclones (McMurdie

and Houze 2006), or anticyclones (Colucci 2015).

Therefore, dynamical adjustment studies (Deser et al.

2016; Smoliak et al. 2015) rely on a proxy for circulation

(i.e., in this study X :5 SLP, Fig. 1).

Estimating the circulation-induced component (ŶX)

of Y yields

Ŷ
X
5 f̂ (X) ’Xĝ|fflffl{zfflffl}

linear approximation

, (1)

where X represents a N 3 (p 1 1) matrix, with each

column an input feature (e.g., SLP anomalies located

on a grid across the spatial domain of interest) with N

observations, and Y is the target vector of length N and

ĝ is a (p 1 1) vector of regression coefficients including

the intercept. We denote ŶX as an estimate of Ŷ5 f̂ (X)

based on the predictor matrix X and a suitable statistical

model f; R̂ denotes the residual component that remains

unexplained, that is, R̂5Y2 ŶX.

By removing estimated circulation components ŶX

from the target variable Y, the residual component (R̂)

is expected to maintain the thermodynamical compo-

nent of the forced response,
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R̂|{z}
thermodynamical

5Y2 Ŷ
X
. (2)

In other words, the function f̂ (X) or its linear approxi-

mation Xĝ encapsulate the physical relationship between

the prevailing atmospheric circulation pattern (on a

specific day or month) and the target variable Y. The

residual component (R̂) represents a time series with

estimated circulation-induced variability removed. Forced

circulation-induced changes would be part of the estimated

circulation-induced component (ŶX) if these circulation

changes project onto SLP (Smoliak et al. 2015). The sta-

tistical estimation step of f̂ (or ĝ) is where statistical

learning techniques and principles can be applied. A con-

sistent statistical prediction of ŶX is directly relevant to the

signal-to-noise ratio in the residual component. Previous

dynamical adjustment studies (e.g., Smoliak et al. 2015;

Deser et al. 2016) estimated circulation-induced compo-

nents with various regressionmethods (see, e.g., section 3c),

but yielded largely consistent results (Deser et al. 2016).

One potential complication is that the effects of ex-

ternal forcing F may have effects beyond the thermody-

namical response of the target variable; it may also affect

the atmospheric circulation X (a forced dynamic re-

sponse; Fig. 1). Hence, a spurious correlation between X

andY induced by Fwould potentially bias the estimation

of f̂ (Peters et al. 2017, chapter 9.3). In other words, a

forced thermodynamical change could be erroneously

explained by some SLP trend if forced circulation trends

are large and not accounted for in the training step. This

biased estimation of f̂ can be avoided, for instance, if 1)

model training is based on a control run without external

forcing, or 2) if forced trends in circulation can be as-

sumed small for other reasons (e.g., training on daily

circulation with minor low-frequency variability, section

2c), or 3) via high-pass filtering the SLP field only for the

training step assuming a smooth forced response in SLP

(Smoliak et al. 2015; Lehner et al. 2018).

b. Recovering the total forced response

Dynamical adjustment methods have been designed

from the outset with the explicit goal of reducing un-

certainties around the total forced response (Deser et al.

2016). While the forced dynamical component can be

estimated in a large ensemble through averaging over

all ensemble member’s estimated circulation-induced

components (Deser et al. 2016; Saffioti et al. 2017), this

approach would fall short if only one realization is

available (e.g., in observations).

An estimate of the total forced response within this

frameworkwould require an estimated circulation-induced

component (ŶX), with forced effects on circulation (X)

removed. Both dynamical and thermodynamical com-

ponents of the total forced response would bemaintained

in the residuals. Under the confounding influence of an

external variableF that affects bothX andY (Peters et al.

2017, chapter 9.3), ‘‘instrumental variable estimation’’ is

typically used to infer unconfounded relationships be-

tweenX andY. That is, an ‘‘instrumental’’ variableZ that

affects X but is unaffected by F is used to determine the

unconfounded relationship between X and Y.

Here, we propose a simple approach along those lines

that is applicable to a single realization of a model

simulation or in observations. In the observable climate

system, a proxy for internal variability that is entirely

unaffected by external forcing (’Z) is likely not avail-

able. In the absence of such a proxy, one might assume

that, first, external forcing F is rather smooth and

therefore causes low- but not high-frequency variability

in atmospheric circulation (see, e.g.,Wallace et al. 1995),

whereas the physical relationship between X and Y is

dominated by day-to-day weather (i.e., high-frequency)

variability. Second, the system is assumed additive in its

components (Fig. 1). Then, one might construct a proxy

variable for internal circulation variability. Here, we use a

high-pass filter on each predictor column in X, such that

X̂
high–freq.

5X2 X̂|{z}
low–freq.

, (3)

where X̂low–freq. represents a trend estimate for each

column p. Then, we obtain

Ŷ
X̂high–freq.

5 X̂
high–freq.

ĝ . (4)

The residual component is expected to maintain forced

thermodynamical and circulation-induced components,

R̂|{z}
thermodynamical1dynamical

5Y2 Ŷ
X̂high–freq.

. (5)

Despite the assumption that external forcing on circu-

lation is smooth, any short-term external forcing that

would affect the target climate variable through ther-

modynamical changes (e.g., cooling in response to a

volcanic eruption) would still be contained in the re-

siduals (see, e.g., section 4c for a discussion). High-pass

filtering the circulation field reduces low-frequency

variability in the predicted circulation-induced com-

ponent ŶX̂high–freq.
. Hence, internal variability at very low

frequencies (e.g., at centennial time scales depending on

the properties of the high-pass filter; see section 3b)

would remain in the residual. Hence, we recommend

that SLP trends are subtracted such that (multi-) decadal
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variability in SLP remains intact, since these represent an

important aspect of internal climate system variability

(Trenberth 1995; DelSole et al. 2011; Sutton et al. 2018).

c. Applying statistical learning techniques in
dynamical adjustment

In this subsection, we describe a specific set of statis-

tical learning tools, regularized linear models and a

nonlinear extension (single-indexmodels), as ameans to

incorporate statistical learning tools and principles into

dynamical adjustment.

1) REGULARIZED LINEAR MODELS

Regularized linear models (RLMs) estimate relation-

ship such as those discussed in section 2a by incorporating

a constraint to penalize model complexity, called ‘‘regu-

larization’’ (Hastie et al. 2001). The constraint is used to

shrink regression coefficients in order to find a parsimo-

nious approximation of the system. Themain advantage of

RLMs is to address high-variance (overfitting) issues with

the least squares fit when the number of correlated pre-

dictors p is large relative to the number of samples n (i.e., if

n � p does not hold), while maintaining advantages of

linear methods such as prediction accuracy and interpret-

ability. The reduction in variance of the fit comes at the

cost of a bias, which is a necessity to address the bias–

variance trade-off (Hastie et al. 2001), that is, the com-

promise between choosing a flexible model (i.e., small

bias), but that is also parsimonious to avoid overfitting (i.e.,

low variance). The number of predictors p in dynamical

adjustment might lie in the order of 102–103 (e.g., p5 400

in a 408 3 408 SLP field at 28 resolution). The number of

samples n depends on the available data, but would un-

likely exceed n’ 300 for monthly observational data for a

given season. Therefore, RLMs represent a natural choice

for this purpose.

Consider a linear model of the form

Y5 g
0
1 �

p

j51

X
j
g
j
1 « , (6)

where the ordinary least squares solution is achieved by

minimizing the residual sums of squares (RSS), that is,

ĝOLS 5 argmin
g

fRSSg

5 argmin
g

�
N

i51

 
y
i
2g

0
2 �

p

j51

x
ij
g
j

!2
8<
:

9=
; . (7)

An important class of penalties for regularized linear re-

gression is the elastic-net family of regularization methods

(Zou and Hastie 2005). The idea is to shrink the vector of

regression coefficients (g) based on a shrinkage parameter

l and a parameter a that balances different forms of

shrinkage. The elastic-net solution is obtained by

ĝelastic-net 5 argmin
g

(
RSS1 l�

p

j51

[(12a)g2
j 1ajg

j
]

)
.

(8)

In other words, the parameter a balances between penal-

izing the sum of absolute values of regression coefficients

[the ‘‘lasso’’ penalty, based on the L1 norm for a5 1 (i.e.,

l�p

j51jgjj)] and the sum of squared regression coefficients

[‘‘ridge regression,’’ based on theL2 penalty fora5 0 (i.e.,

l�p

j51g
2
j )]. The regularization parameterl$ 0 determines

the magnitude of shrinkage. The apparently small differ-

ence in shrinkage type between the lasso and ridge re-

gression (or intermediate types if 0, a, 1, the elastic-net

penalty) leads to an important practical difference in the

resulting vector of regression coefficients (ga) and in-

terpretation of the statistical model:

As l increases, ridge regression shrinks regression

coefficients, that is, reduces the magnitude of regression

coefficients. In the case of orthonormal columns in X,

ridge regression shrinks coefficients proportional to

l (Hastie et al. 2001). In the case of correlated predictors

in X, ridge regression shrinks inverse proportionally to

the variance of the principal components in X and thus

distributes regression coefficients between all predictors

p (Hastie et al. 2001). In contrast, the lasso shrinks re-

gression coefficients and performs feature selection (i.e.,

truncates below a given threshold). Intermediate values

of a (0 , a , 1) in the elastic net can be viewed as a

combination of the lasso and ridge penalties (see also

Hastie et al. 2001 formore details on the shrinkage). The

bias obtained because of shrinkage is small if a good

sparse linear approximation of the target variable exists

(in the sense of a small L1 or L2 norm).

Different choices of a account for possibly different

assumptions around the data structure, data-generating

processes, and interpretation of the regression model in

the context of predicting a target climate variable based

on a spatial field of predictors:

Ridge regression yields a smooth spatial map of

nonzero regression coefficients. Ridge regression (or the

elastic net with low a) would likely be more appropriate

if all gridcell predictors are relevant for predicting the

target variable, or if the circulation field would be con-

taminated with Gaussian noise for the prediction (e.g.,

in observations). Conversely, the lasso penalty would

impose sparsity by choosing only a small subset of pre-

dictors (i.e., individual locations) and discarding the rest.

The lasso penalty would yield a better prediction if

only a few predictors would be relevant for the target

1 SEPTEMBER 2019 S I P PEL ET AL . 5681
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variable. The elastic net offers a compromise: coefficient

shrinkage for a set of correlated predictors (e.g., a region

of high or low SLP) is similar to ridge regression, that is,

yielding smooth coefficients in space, while irrelevant

predictors are eliminated. In this study, the parameter

a is set to three different values (ridge regression: a5 0,

the elastic net: a 5 0.5, and the lasso: a 5 1).

The regularization or flexibility parameter l is typically

determined by cross validation (in this study: 10-fold cross

validation). That is, the training dataset is partitioned

into 10 folds that contain each 10% of the data. Next, for

each fold, a sequence along 100 candidate l values (reg-

ularization path) of RLMs is estimated based on the re-

maining 90% of the data. The regularization parameter

l is selected to minimize mean squared prediction error

over the holdout data (i.e., the ‘‘unseen’’ 10%not used for

model fitting) and all folds. An illustrative example of a

regularization path and coefficient map for ridge re-

gression is shown in Fig. 2 in the context of estimating the

influence of the winter sea level pressure on precipitation

over a location in northern Switzerland (see an animation

of the full regularization path in the online supplemental

material). High values of l yield very small coefficients

and thus low predictive performance [high mean-square

error (MSE), low R2], while low l values allow for good

performance but eventually begin to overfit. The example

shows that the regression coefficients are 1) spatially co-

herent, 2) negative in a region located to the northeast,

and 3) largely positive to the southwest of the location in

Switzerland. Hence, these patterns capture a key feature

of midlatitude weather variability in a data-driven way: a

midlatitude synoptic-scale cyclone, centered over east-

central Europe, and an associated high pressure system

over southwest Europe andNorthAfrica. Such a pressure

pattern would be predicted to drive precipitation over the

target grid cell, and could be interpreted physically as

advection of moist Atlantic air into central Europe to-

ward the rearward flank of the cyclone.

FIG. 2. Illustrative example of the ridge regression regularization path for estimating the

effect of atmospheric circulation anomaly patterns on winter precipitation over northern

Switzerland (black dot). (a) Individual grid cells’ regression coefficients illustrate the nature of

coefficient shrinkage; and (b) cross-validated MSE (and associated R2 values) along the reg-

ularization path indicated by log(l) values. (c) Map of ridge regression coefficients at one

snapshot along the regularization path indicated by the thin black line above.
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2) A NONLINEAR EXTENSION: REGULARIZED

SINGLE-INDEX MODELS

RLMs cannot model a nonlinear relationship between

a field of atmospheric circulation variables and a target

climate variable. We therefore test a simple nonlinear

extension of RLMs, following the idea of a ‘‘sparse

single-index model’’ (Alquier and Biau 2013): The idea

is to use the prediction from a RLM (Xĝ) and allow

nonlinearity of the form

Y5 h(Xĝ)1 «5 h(Ŷ
linear pred.

)1 « . (9)

Here, the nonlinear function h( ) is determined by

using a LOWESS smoother: fitting a locally weighted

second-order polynomial (Cleveland et al. 1991) that is

determined using the univariate predictor derived from

the fitted RLM (Xĝ) and predictand Y.

3. Data, methods, and experimental setup

a. Data

To evaluate statistical learning methods for dynamical

adjustment and compare them against existing tech-

niques, we apply them to a set of fully coupled climate

simulations with the Community Earth System Model

(CESM), version 1.2.2. These simulations consist of 1) a

4700-yr control run with constant preindustrial forcing,

and 2) a 21-member ensemble simulation, with individual

ensemble members that span 1850–2100 driven by his-

torical CMIP5 forcing during 1850–2005, and RCP8.5

during 2006–2100 (Meinshausen et al. 2011). Each en-

semble member initially branches from the control with

different atmosphere and ocean initial conditions sepa-

rated by 20-yr intervals. All simulations are run with an

atmospheric resolution of 1.98 3 2.58 in space and 30min

in time, with 30 vertical levels using the Community At-

mosphere Model, version 5 (CAM5.3; Neale et al. 2010).

A 18 ocean grid with 60 levels in the vertical with the

Parallel Ocean Program 2 (POP2; Smith et al. 2010) is

used. CESM1 includes fully coupled atmosphere, ocean,

sea ice, and land surface components (Hurrell et al. 2013;

Meehl et al. 2013). The model setup has been used and

evaluated in other studies (e.g., Stolpe et al. 2019).

b. Experimental setup

1) PERFORMANCE EVALUATION IN A CLIMATE

MODEL CONTROL RUN WITH FIXED FORCING

A performance evaluation for estimating temperature

and precipitation variability from atmospheric circula-

tion (see section 4a) is set up as follows:

1) 70 grid cells are selected randomly (weighted by

area) as predictands from the European domain (see

Table S1 in the online supplemental material), the

SLP field around each predictand location is used as

predictor.

2) Performance evaluation is conducted with respect to

1) temperature and precipitation as respective target

variables, 2) different statistical methods (described

in sections 2c and 3c), 3) the length of the available

training sample (10–1000 yr), 4) the spatial domain

size of the SLP field used for prediction (128 3 128 up
to 608 3 608 centered on the specific grid cell), for 5)

daily versus monthly training data.

3) Anomalies are derived for each predictor and target

time series relative to its respective monthly mean

seasonal cycle. In addition to the instantaneously

prevailing circulation anomalies on the specific day/

month, lagged circulation values are included in X

for the antecedent month: That is, for training in 1)

monthly and 2) daily resolution, the first 10 principal

components of the 1) previous month and 2) aver-

aged separately for 1–2, 3–7, and 8–30 lag days are

included as predictors in X. However, including lags

changes the performance of the methods only very

marginally.

4) Models are trained and cross validated on a period

within the control run (years 500 to 1500), and

evaluated in a different period (years 1600 to 2000).

5) Performance is evaluated against the ‘‘fraction of

variance explained’’ by the prediction [R2; denoted

here as squared sample correlation between the out-

of-sample prediction (Ŷ) and the target variable (Y)]

at monthly resolution at each location. The measure

is used in order to provide a standardized measure

for performance that is comparable across regions

and seasons.

In addition to these method tests over Europe, pre-

diction performance of temperature and precipitation is

illustrated at the global scale for the EOF benchmark

and the regularized linear models using a 50-yr training

period and a 208 3 208 training domain.

2) DYNAMICAL ADJUSTMENT APPLICATION TO AN

ENSEMBLE OF MODEL SIMULATIONS WITH

TIME-VARYING FORCING

The configuration described above also forms the basis

for a regional-scale evaluation of dynamically adjusted

trend slopes inmodel simulationswith time-varying forcing

(section 4b) with only minor modifications:

d An estimate for the circulation-induced component of

temperature and precipitation is obtained usingRLMs

at daily resolution in all grid cells within the European
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domain [Special Report on Managing the Risks of

Extreme Events and Disasters to Advance Climate

Change Adaptation (SREX) regions (IPCC 2012),

north Europe (NEU), central Europe (CEU), and

Mediterranean (MED)]. Subsequently predictions are

spatially and temporally aggregated to regional and

seasonal averages.
d Two configurations are used to disentangle 1) the

forced thermodynamic component and 2) the total

forced response (cf. sections 2a and 2b). In 1), training

and prediction variables are not detrended. In 2), to

account for potentially confounding trends in atmo-

spheric circulation, a high-pass locally weighted

scatterplot smoothing (LOWESS) filter based on re-

gression that is local in time (Cleveland et al. 1991)

is applied prior to model training to remove low-

variance components from each predictor time series

(and predictand time series for training). LOWESS

parameters are fixed at a window size of 75% of the

time series length (n 5 250 yr) with a second-order

polynomial fit. The detrending procedure removes

variability at centennial time scales, but decadal

variability remains largely unaffected.
d For the dynamical adjustment of one ensemble mem-

ber m, all model training is conducted in an indepen-

dent ensemble member m 1 1 and in a 50-yr period

with historical time-varying forcing (1969–2018), to

mimic an application to real-world observations.

The dynamically adjusted total forced response of

temperature and precipitation at the global scale (sec-

tion 4c) is configured similar to the regional evaluation.

Predictions are derived at monthly resolution for each

grid cell and subsequently aggregated to global annual

averages. Because the globally aggregated predictions

tend to underestimate interannual variability, the vari-

ance of the global mean prediction is adjusted in a final

step by linearly regressing the detrended global mean

target time series on the aggregated prediction:

Y
globalmean

5b Ŷ
globalmean|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

area–weighted sumover grid cell predictions

1 «. (10)

Because the prediction of global mean precipitation (in

contrast to temperature) achieved through aggregation

is poor (Fig. 9), the latter is improved by using ridge

regression instead of simple linear regression in Eq. (10)

within the training dataset.

Statistical learning is performed using the R pack-

ages ‘‘glmnet’’ (Friedman et al. 2010) for RLMs, and

‘‘pls’’ (Wehrens and Mevik 2007) for partial least

squares (PLS) regression in R, version 3.4.3 (R Core

Team 2018).

c. Benchmark regression methods for dynamical
adjustment

To benchmark the performance of the regularized

linear models and the sparse single-index models (de-

scribed in section 2c), we implement two regression

methods used in earlier dynamical adjustment studies

(Saffioti et al. 2016; Smoliak et al. 2015). In addition, an

illustrative comparison to the performance of the cir-

culation analog method is provided (Deser et al. 2016,

described in the supplemental material).

1) PRINCIPAL COMPONENT REGRESSION

Empirical orthogonal function (EOF) analysis is

widely used in climate science (see, e.g., von Storch and

Zwiers 2002). For example, Saffioti et al. (2016) de-

termines the relationship in Eq. (1) by regressing the

target climate variable onto the principal components

that are associated with the first five EOFs in the cir-

culation field X. This procedure is almost identical

to principal component regression described in Hastie

et al. (2001) except that the number of principal com-

ponents that are retained for regression is fixed instead

of determined as a tuning parameter by cross validation.

In this study, EOF-based dynamical adjustment with a

fixed number of five EOFs retained (as in Saffioti et al.

2016) serves as the standard benchmark for comparison

to the other methods.

EOF regression methods have the advantage of being

related to modes of climate variability (e.g., the NAO;

Hurrell 1995), and are thus interpretable in this context.

However,methodological choices (such as domain size and

number of modes used in the model) affect the perfor-

mance skill of EOF regression methods. This is, in part,

because higher-order SLP EOFs tend to capture small-

scale features that are not representative of the overall

circulation field, which can introduce spurious structure

into the derived circulation-target variable relationship.

2) PARTIAL LEAST SQUARES

Smoliak et al. (2015) used partial least squares re-

gression to estimate the effect of circulation on target

climate variables. Similarly to principal component

regression, a regression step is performed based on a set

of M derived orthogonal input directions (latent vec-

tors). Each latent vector k is constructed by successively

weighting each normalized input variable by its corre-

lation with the target variable, and subsequently the

target variable is regressed on the respective latent

vector k; followed by an orthogonalization step of the

input variables with respect to the latent vector k, from

which the latent vector k 1 1 is constructed (for details,

see, e.g., Hastie et al. 2001; Smoliak et al. 2015).
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PLS regression methods have the advantage of being

more flexible than EOF methods, because their derived

inputs are designed based on their relationship with the

target variable. However, similar to EOF regression,

PLS is based on a fixed cutoff kmax (of input directions),

and is potentially susceptible to overfitting as more la-

tent vectors are incorporated (Smoliak et al. 2015).

4. Results and discussion

In section 4a, we evaluate the performance of statis-

tical techniques to estimate precipitation and tempera-

ture variability from atmospheric circulation in a climate

model control simulation with fixed forcing (the key step

in dynamical adjustment). The associated question of

whether the dynamically adjusted residual trends of

such predictions contain accurate estimates of the total

or thermodynamical forced components in model sim-

ulations with time-varying forcing is evaluated in section

4b and illustrated at the global scale in section 4c.

a. Performance evaluation of statistical learning
methods for dynamical adjustment

1) COMPARISON OF STATISTICAL METHODS AND

INFLUENCE OF TRAINING CHARACTERISTICS

OVER EUROPE

Across Europe, an average of 48% and 60% of the

variance in monthly precipitation and temperature, re-

spectively, is explained by SLP with the benchmark

EOF method (‘‘lm-EOF’’ in Fig. 3 and Fig. S1) at grid-

cell scale in winter. These estimates are largely un-

affected by training sample length and whether monthly

or daily data are used for training (cf. Figs. 3a and 3b for

FIG. 3. Performance of statistical prediction for monthly precipitation over the European domain. Plots show the

fraction of variance explained (R2) in an independent test period for different statistical methods used for pre-

diction, showing effects of (a),(b) training sample length and (c),(d) spatial extent of training sample (50-yr

training), and trained on (a),(c) monthly vs (b),(d) daily training data. R2 is calculated for comparability in both

cases for monthly data; diamonds show averaged R2 values and error bars represent the 25th and 75th quantile

across European locations.
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precipitation, Fig. S1 for temperature). For monthly

training data and very short training samples (about

10 yr), RLMs show a performance comparable to the

EOF benchmark (Figs. 3a, 4). However, increasing the

sample length beyond 10 yr, RLMs show a remarkable

performance increase, explaining on average approxi-

mately 78% and 83% of variance in monthly pre-

cipitation and temperature, respectively (Fig. 3a and

Fig. S1). The performance of PLS lies in between the

RLMs and the EOF-based benchmark. The circulation

analog method performs slightly better than the EOF-

based benchmark (Fig. 4). Moreover, if the daily train-

ing resolution is exploited, RLMs clearly outperform the

EOF benchmark even for very short training sample

lengths (Fig. 3b). For example, the performance ob-

tained with a daily training dataset of only 30 yr in

length, with around 70% variance explained, is only

achieved with 100–500 yr of monthly training data for

precipitation (Fig. 3). Hence, for training, daily data are

much more efficient than monthly data, indicating a

clear benefit of capturing circulation dynamics at daily

time scales (rather than using ‘‘monthlymean weather’’)

for dynamical adjustment.

A nonlinear sparse single-index model improves

prediction performance for precipitation slightly

further, while this is not the case for temperature

(‘‘lasso1LOWESS’’ in Figs. 4a and 4b). This finding

indicates that nonlinearities in daily circulation dynamics

are more relevant for estimating the circulation-induced

component in precipitation compared to temperature,

which is likely related to the skewed precipitation

distribution.

A relatively small domain appears preferable if only a

short training record is available (here: 50 yr and

monthly training resolution), as prediction performance

decreases with increasing domain size (Fig. 3c) for all

regression methods. However, the dependence on do-

main size is weak for RLMs if a long training sample or

daily data are available (Fig. 3d), while the EOF-based

method with fixed number of EOFs shows decreasing

performance with larger domains. Overall, good per-

formance for predicting precipitation can be achieved

for relatively modest domain sizes (around 248 3 248,
centered on the respective grid cell), whereas slightly

larger domains are preferable for temperature dynami-

cal adjustment (around 408 3 408 in Europe; Fig. S1).

Note that these domains are comparable in size to those

in a ‘‘weather type’’ classification scheme for regional

downscaling (Boé et al. 2006), but smaller than domain

sizes previously used for dynamical adjustment (Wallace

et al. 2012; Smoliak et al. 2015; Deser et al. 2016).

Overall, our results indicate that RLMs in combina-

tion with daily data for model training and prediction

improve estimates of circulation-induced temperature

or precipitation variability. The main advantage of

RLMs (over the EOF benchmark, for example) lies in

their flexibility to capture locally relevant information

about the circulation field that may not be captured by

the first few EOFs (or latent vectors in PLS). For dy-

namical adjustment based on training data of 30–50 yr

(comparable to observations), estimates from RLMs

benefit considerably from exploiting daily circulation

data for training. Accordingly, using RLMs with daily

data might open up the possibility for dynamical ad-

justment at daily time scales, that is, targeting actual

weather situations rather than only monthly mean

weather.

Furthermore, the results confirm that there is a rela-

tively weak dependence of prediction performance on

domain size for the flexible regression methods if

enough training data, especially at the daily time scale,

are available. In contrast, the EOF benchmark suffers

severely from a large domain size, irrespective of

training sample length, as the locally relevant in-

formation encapsulated in the first few EOFs decreases

with increasing domain size.

2) ESTIMATING CIRCULATION EFFECTS AT THE

GLOBAL SCALE

Next, we illustrate the ability to explain temperature

and precipitation variability based on atmospheric cir-

culation at the global scale, which is a prerequisite for

the application of dynamical adjustment beyond the

midlatitudes. The global area-weighted average of

monthly precipitation variance explained at gridcell

level is about R2 ’ 0.62 for the lasso and elastic-net re-

gression (and slightly lower for ridge regression) for

both DJF and JJA (Figs. 5b,d). Using a single-index

model based on lasso regression (lasso1LOWESS)

yields a slightly higher fraction of variance explained

R2 ’ 0.67. The standard EOF-based benchmark yields

on average R2 values around only 0.22 (DJF) and 0.3

(JJA). Circulation-induced ‘‘predictability’’ obtained

in Northern Hemisphere (NH) winter (Fig. 5a) and

summer (Fig. 5c) shows distinct but climatologically

consistent differences: In boreal winter, atmospheric

circulation is a explains a large fraction of precipitation

variability in NH mid- and high-latitude regions, espe-

cially along continental west coasts and adjacent oceanic

areas. In contrast, precipitation in dry regions such as the

Sahara or theArabian Peninsula is not explained well by

atmospheric circulation, and low predictability extends

to the Southern Ocean and southeastern Australia. In

boreal summer in mid- and high-latitude regions, pre-

cipitation is generally explained better in the SH than in

the NH. Predictability is low in the SH over the Namib
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FIG. 4. Prediction performance for (a) monthly precipitation and (b) monthly temperatures

in winter over the European domain. The performance of regularized linear models is

compared to theEOF-based benchmark regressionmethod (‘‘lm-EOF, 5 comp.’’) for training

onmonthly and daily data and different lengths of the training sample. TheR2 values based on

atmospheric circulation analogs (Deser et al. 2016) are shown for comparison.
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Desert and over central South America. In the NH, dry

regions such as the Mediterranean and inside continen-

tal interiors (central North America, central Eurasia) are

not very well explained from atmospheric circulation.

Overall, circulation-induced components are more im-

portant in winter. In dry regions, the vertical structure of

the atmosphere is likely important, hence including ver-

tical information would potentially benefit the ability of

circulation to explain precipitation variability (but is be-

yond the scope of the present study).

For temperature anomalies, monthly circulation-

induced predictability is slightly higher than for precipi-

tation (R2
DJF ’ 0:73, R2

JJA ’ 0:67; Fig. 6). The EOF-based

benchmark method explains only around 30% of the

variance in monthly temperatures. The climatological

patterns of predictability are noticeably different: Land

regions appear generally more driven by atmospheric

circulation than oceanic regions with the exception of

temperatures in the equatorial ENSO region (which are

also well predicted). Low predictability of temperatures

over the ocean is likely associated with memory effects

due to ocean energy storage and lagged ocean–atmosphere

interaction (Deser and Timlin 1997), which is not captured

by instantaneous circulation anomalies (or the first few

lagged EOFs).

In summary, atmospheric circulation patterns can be

used to estimate temperature or precipitation variability

consistently at the global scale using RLMs, although

performance varies depending on background climate.

Accordingly, dynamical adjustment applications could

be extended in the future beyondmidlatitude land areas,

for instance, toward ocean regions where including

lagged circulation information would become a key re-

quirement (Deser and Timlin 1997).

FIG. 5. (a),(c) Performance of monthly precipitation predictions based on regularized linear models in

(a) Northern Hemisphere winter (DJF) and (c) Northern Hemisphere summer (JJA). (b),(d) Comparison of

prediction performance using a standard EOF-based method (‘‘lm-EOF,’’ 5 comp.), and the performance of reg-

ularized linear models, all based on daily training data, in (b) NorthernHemisphere winter (DJF) and (d) Northern

Hemisphere summer (JJA).
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b. Dynamical adjustment at the regional scale over
Europe: Uncovering the total forced response and
dynamic versus thermodynamic components

In this subsection, we evaluate the consistency of the

residual trend slopes obtained by dynamically adjusting

all 21 ensemble members over Europe to uncover 1) the

total forced response (evaluated against the 21-member

ensemble mean ‘‘total forced’’ response), and 2) ther-

modynamically and dynamically driven components of

the total forced response.

1) UNCOVERING THE TOTAL FORCED RESPONSE

WITH IMPROVED SIGNAL-TO-NOISE RATIO

Winter precipitation over both NEU and MED is

highly variable from year to year (Figs. 7a and 8a, il-

lustrated for the first three ensemble members, and for

all 21 members for NEU and MED, respectively). In

addition, NEU shows an externally forced increasing

trend in the twenty-first century, while winter precipi-

tation over the MED region is projected to decrease in

the ensemble mean forced signal (Figs. 7b, 8b). None-

theless, individual ensemble members deviate from the

ensemble mean, which is evident in the spread of 30-yr

trend slopes in individual ensemble members in both

regions (bottom panel in Figs. 7 and 8).

The prediction of winter precipitation based on

detrended circulation anomalies explains the bulk of

year-to-year variability in both regions (NEU: R2 5
0.92, MED:R25 0.90, evaluated against detrended time

series, Table 1). However, long-term trends (i.e., span-

ning several decades) remain unexplained by detrended

circulation anomalies in both regions (light blue lines in

Figs. 7a,c,e). Hence, precipitation trends must result

from a forcing external to year-to-year circulation vari-

ability. The dynamically adjusted residual time series

contain a smooth trend toward increasing precipitation

in NEU, and a smooth drying trend inMED, which both

match the ensemble mean estimate of the total forced

response well (blue lines in Figs. 7b and 8b).

To evaluate the consistency of the residual trend

slopes for RLMs (shown in Figs. 7 and 8), t tests are

FIG. 6. As in Fig. 5, but performance evaluation for temperature instead of precipitation.
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FIG. 7. Dynamical adjustment of winter precipitation in northern Europe in forced runs in the 21-member

CESMensemble. (a)Original time series and predictions ŶX̂ (‘‘no detrend.’’) and ŶX̂high–freq.
(‘‘detrended’’) for

three individual ensemble members (1–3) and all members. (b) Residual, dynamically adjusted time

series for individual ensemble members (1–3), and for all ensemble members in comparison to the ensemble

mean forced response (black). (c) NorthernEurope 30-yr trend slopes for dynamically adjusted time series of

winter precipitation in the 1961–2020 forced period, compared to the ensemble mean.
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FIG. 8. As in Fig. 7, but dynamical adjustment for Mediterranean winter precipitation in the 21-member

CESM ensemble.
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performed between 30-yr linear trend slopes calculated

from the original precipitation time series from each

ensemble member and the residual trend slopes ob-

tained after dynamical adjustment for three different

periods (present, near future, end of century). The null

hypothesis of statistically indistinguishable trend slopes

cannot be rejected on a a5 0.05 confidence level for any

time period in NEU orMED. In fact, the null hypothesis

is rejected in only one out of the 48 tests (for summer/

winter, temperature/precipitation, the three European

regions and three time periods; Table 1). Hence, we

conclude that dynamical adjustment using RLMs based

on detrended circulation anomalies yields an accurate

estimate of the total forced response. However, unlike

RLMs, the residual trend slopes for precipitation ob-

tained from the nonlinear estimates (using the sparse

single-index model) deviate slightly from the ensemble

mean toward the end of the twenty-first century (not

shown). This could be due to some higher-order changes

in the sea level pressure patterns that are not removed

by the detrending procedure, and we therefore focus on

the regularized linear models for dynamical adjustment

for the remainder of the manuscript.

Signal-to-noise ratios increase substantially in the

dynamically adjusted residual trend slopes (Figs. 7b, 8b)

because a large fraction of circulation-induced vari-

ability is accounted for. Consequently, the forced trend

emerges more clearly, and uncertainties related to 30-yr

trend slopes decrease considerably (lower panels in

Figs. 7 and 8). For instance, the spread around dynam-

ically adjusted residual 30-yr trends from a single en-

semble member is reduced to approximately the spread

of a hypothetical ensemblemean of 4–8members (lower

panels in Figs. 7 and 8). Climatological metrics that are

linked to signal-to-noise ratios such as the ‘‘time of

emergence’’ (cf. Hawkins and Sutton 2012; Lehner et al.

2017) shift earlier. For instance, a ‘‘1s emergence’’

in NEU precipitation occurs in approximately 2011

after dynamical adjustment instead of 2062, while the

MED forced trend is evident in the residual time series

but unlikely to emerge before 2100 (Table 1). Among

the regions documented here, precipitation signals

are likely to emerge before 2020 (at a 1s level) for NEU

and CEU in winter, and for NEU in summer; whereas

without dynamical adjustment these forced signals

would only emerge in the second half of the twenty-first

century. The forced temperature trend emerges in all of

the seasons and regions before 2005. Last, ‘‘potential

predictability,’’ the predictability of a decadal mean

climate variable in one ensemble member from the

forced response alone (Stott et al. 2000; Lambert et al.

2004, see Table 1 herein for detailed definition), increases

across all regions and seasons (Table 1) with temperature

and precipitation predictability in the ranges of 75%–

95% and 21%–61%, respectively, in the 1960–2020

period.

Overall, our analysis shows that the residual trend

slopes after dynamical adjustment based on linear sta-

tistical learning techniques reveal 1) an accurate esti-

mate of the total forced response for all tested regions,

seasons and variables that we test, and 2) considerably

reduced uncertainties around the forced trend signal.

This example uses a training step within a single en-

semble member and a short training period (50 yr).

Hence, applying the technique to observations would be

straightforward.

2) DATA-DRIVEN PARTITIONING OF THE TOTAL

FORCED RESPONSE INTO THERMODYNAMIC

AND DYNAMIC COMPONENTS

Dynamical adjustment was designed to disentangle

thermodynamical and dynamical components of the

forced response (Deser et al. 2016). Here, we illustrate

thermodynamical and circulation-induced contributions

to forced trends in simulated European precipitation

using the data-driven approach (described in sections 2a

and 2b). That is, 1) thermodynamical components and 2)

the total forced response are estimated, by subtracting

from precipitation time series (i) the predicted total (i.e.,

forced and internal) circulation-induced component and

(ii) the predicted circulation-induced component with

low-variance circulation components removed.

For NEU winter precipitation, estimates of the

forced thermodynamic component (orange lines in

Fig. 7b) and the total forced response (blue lines) in the

residuals produce virtually identical trend slopes. This

indicates that forced trends in seasonal winter pre-

cipitation over NEU are driven by thermodynamical

changes with only a minor contribution of forced

circulation-induced changes. This result is consistent

with a thermodynamical increase in the atmospheric

moisture holding capacity that drives increases in NEU

precipitation over the twenty-first century (see, e.g.,

Bindoff et al. 2013). In contrast, winter precipitation

over the MED region throughout the twenty-first cen-

tury shows a slightly negative forced trend (Fig. 8b).

However, contrary to NEU, nondetrended circulation

anomalies capture Mediterranean drying remarkably

well, whereas circulation anomalies with low-variance

components removed predict no trend. Hence, the

forced thermodynamical component in the residuals

reveals no change or only a weak change (orange lines

in Fig. 8b), whereas the estimated total forced response

matches the ensemble mean very well (Fig. 8b). This

indicates that projected decreases in Mediterranean

precipitation in the twenty-first century result from
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externally forced changes upon atmospheric circula-

tion, consistent with theoretical expectations and ear-

lier literature (Yin 2005; Seager et al. 2014; He and

Soden 2017; Kröner et al. 2017).
In summary, the simple approach illustrated here

successfully partitions precipitation change over Europe

into thermodynamical and dynamical components. The

partitioning indicates that projected Mediterranean

drying in the twenty-first century arises from forced

circulation changes, whereas increased winter precipi-

tation in northern Europe is driven by forced thermo-

dynamical changes associated with an increase in

atmospheric moisture in a warmer climate. However, a

few caveats should be noted: First, uncovering the total

forced response through high-pass filtering circulation

patterns relies on an assumption that forced circulation

trends are smooth, and that internal and forced com-

ponents are additive (section 2b). Depending on the

properties of the high-pass filter, multidecadal or cen-

tennial variability in atmospheric circulation could be

removed, and hence would be interpreted as a part of

the residual time series. Second, it remains to be tested

whether such an approach could be extended to other

regions or quantities such as daily extremes. Third,

potential future changes in the physical relationship

between circulation anomalies and precipitation, for

example, through shifts in mean versus extreme pre-

cipitation (Allen and Ingram 2002) or increased pre-

cipitation variability (Pendergrass et al. 2017) would not

be captured as a circulation component, and any such

changes would remain in the residuals (i.e., a thermo-

dynamical component).

c. Can dynamical adjustment reveal the total forced
response at the global scale?

In a final step, we evaluate to what extent the total

forced response in global annual mean precipitation

(GMP) and temperature (GMT) can be revealed by

dynamical adjustment from an individual ensemble

member. GMP is indicative of changes in the global

hydrological cycle as driven, for instance, by aerosol or

greenhouse gas forcing (Allen and Ingram 2002; Salzmann

2016), and therefore comprises a relevant target and test

case for dynamical adjustment.

Average performance increases through spatial and

temporal aggregation (Fig. 9) up to almost 80% variance

explained for GMT and almost 90% variance explained

for precipitation at the hemispheric scale (Fig. 9). GMP

cannot be predicted from an aggregation of gridcell

predictions (Fig. 9) because the magnitude of GMP

variation is much smaller than hemispheric precipita-

tion variability as Northern and Southern Hemisphere

precipitation anomalies compensate each other (not

shown). A second training step (instead of simple ag-

gregation; section 2c) improves the prediction of global

mean precipitation (i.e., about 70% variance explained,

red line in Fig. 9).

GMP, along with its estimated circulation-induced

components, is illustrated for the first two ensemble

members during 1950–2020 in Fig. 10a. Both ensemble

FIG. 9. Aggregation of gridscale predictions (in original 968 3 1448 resolution) of (a) temperature and

(b) precipitation to regional, continental, and global-scale predictions, and from monthly to annual, increases the

fraction of variance that can be explained by atmospheric circulation. For continental-scale and global-scale pre-

dictions, a second linear training step based on the continentally/globally aggregated predictions improves the

predictions slightly further.
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members show considerable interannual variability and

forced trends. The GMP total forced response, illus-

trated by the 21-member ensemble mean (black lines in

Fig. 10b), shows a small reduction during 1960–90. This

is consistent with increased aerosol forcing that coun-

teracted GHG forcing (Salzmann 2016), and radiatively

induced effects that dominated over changes induced by

warming (Myhre et al. 2018). This period is followed by

a relatively rapid forced GMP increase. The estimated

circulation-induced component matches interannual pre-

cipitation variability to a reasonable degree (blue lines in

Fig. 10a). The residual, dynamically adjusted time series

for both ensemble members (blue lines in Fig. 10b)

matches the ensemble mean estimate of the forced re-

sponse closely (Table 2 for comparison of trend slopes),

which indicates that the total forced GMP response can

indeed be uncovered as a residual from dynamical ad-

justment. Moreover, the GMP response to short-term

external forcing, for instance, induced by major volcanic

eruptions (e.g.,MountAgung in 1963,Mount SaintHelens

and El Chichón in 1980 and 1982, and Mount Pinatubo in

1992; Robock 2000), appears to be well captured by a

single, dynamically adjusted ensemble member (Fig. 10b).

GMT in individual ensemble members is not as

dominated by interannual variability as GMP, but var-

iability around the forced trend is nonetheless consid-

erable (Fig. 11a). The estimated circulation-induced

component (Fig. 11a) captures most interannual GMT

variation. The dynamically adjusted time series (Fig. 11b)

aligns closely with the ensemble mean, and thus appears to

accurately reflect the total forced response. Similarly to

GMP, short-term cooling in response to volcanic eruptions

TABLE 2. Global-scale dynamical adjustment.

Variable Season Region R2
TCa

(present)

TCa (near

future)

TCa

(future)

PPb

(original)

PPb

(adjusted)

ToEc (original,

one std dev)

ToEc (adjusted,

one std dev)

Temperature Annual Global 0.78 0.11 0.61 0.03 0.83 0.92 1989 1982

Temperature Annual NH 0.82 0.35 0.90 0.09 0.88 0.98 1984 1981

Temperature Annual SH 0.82 0.36 0.89 0.09 0.73 0.95 1990 1982

Precipitation Annual Global 0.65 0.73 0.88 0.85 0.40 0.69 2005 2000

Precipitation Annual NH 0.88 0.44 0.92 0.27 0.10 0.61 2018 2005

Precipitation Annual SH 0.94 0.48 1.00 0.43 0.02 0.54 2048 2003

a TC: Trend consistency of residual trend slopes (see Table 1 for additional explanations).
b PP: Potential predictability.
c ToE: Time of emergence.

FIG. 10. Global dynamical adjustment of precipitation (a) accounts for interannual variability in an individual

simulation, and (b) reveals an estimate of the total forced response from an individual ensemble member that

closely resembles the ensemble mean.
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appears to be captured in the dynamically adjusted mem-

bers, while in unadjusted members such external cooling

signals are dominated by internal variability.

Overall, we conclude that dynamical adjustment using

statistical learning methods successfully uncovers accu-

rate estimates of the GMP and GMT total forced re-

sponse from a single ensemble member. This implies

that the ensemble size required to extract the total

forced climate response can be reduced substantially.

For an arbitrary ensemble member, the time of emer-

gence of global or hemispheric climate signals is ad-

vanced and potential predictability increases (Table 2).

Furthermore, dynamical adjustment at the global scale

reveals thermodynamical responses to short-term ex-

ternal forcing such as induced by volcanoes from a single

ensemble member (Figs. 10, 11). However, an important

caveat is that forced circulation trends are assumed to be

smooth in time and also additive, and are removed from

the circulation field prior to dynamical adjustment. This

assumption implies that, first, circulation variability at

centennial time scales is reduced. Second, unlike short-

term forced thermodynamical components, any short-

term forced circulation component would likely be

included as part of internal circulation variability.

5. Conclusions

The overall objective of this study was to incorpo-

rate statistical learning principles into dynamical adjust-

ment. Specifically, our goals were 1) to evaluate statistical

estimates of circulation-induced components of precipita-

tion and temperature variability at local, regional, and

global scales; and 2) to evaluate whether the externally

forced component of these responses can be isolated.

First, we framed dynamical adjustment conceptually

in the context of statistical learning and introduced a

specific set of statistical learning techniques to apply

regularized linear models and their nonlinear extension.

Then, we evaluated the performance of regularized

linear models in estimating the relationship between

atmospheric circulation and temperature/precipitation

in a long climate model control run. RLMs, along with

optimizing temporal and spatial characteristics of the

training domain, provide a parsimonious representation

and considerably improved performance. For instance,

an average of 83% and 78% variance is explained by

atmospheric circulation in monthly winter temperature

and precipitation, respectively, at gridcell scale in

Europe. Similarly, around 80% of the variance can be

explained by atmospheric circulation for annual mean

temperature and large-scale precipitation. By reducing

training resolution from monthly to daily data, the

available training sample is used much more efficiently.

For instance, 30–50 yr of training on daily European

winter precipitation data (i.e., comparable to the length

of observational records) achieve similar performance

to a sample of around 100–500 yr if only monthly time

resolution is exploited for training.

Second, we evaluated the consistency of the ‘‘dy-

namically adjusted’’ residual trend slopes in a set of

FIG. 11. Global dynamical adjustment of temperature (a) accounts for interannual variability in an individual

simulation, and (b) reveals an estimate of the total forced response from an individual ensemble member that

closely resembles the ensemble mean.
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simulations where forcing varies over time, with a

21-member ensemble. Our evaluation focused both re-

gionally over Europe and at the global scale, comparing

the total forced response from dynamical adjustment

against an estimate from the ensemble mean. We show

that residual trend slopes of temperature and pre-

cipitation from dynamical adjustment represent an ac-

curate estimate of the total forced climate response both

regionally and globally. More nuanced thermodynami-

cal changes related to, for example, short-term volcanic

forcing, also appear to be captured from a single dy-

namically adjusted ensemble member. Signal-to-noise

ratios and related potential predictability metrics im-

prove considerably (consistent with earlier studies;

Deser et al. 2016; Lehner et al. 2017). For instance, un-

certainties in forced 30-yr precipitation trends in Europe

are reduced through dynamical adjustment and ap-

proach the uncertainty of trend slopes obtained from

a 4–5-member ensemble mean. A similar reduction of

minimum-required ensemble size can be achieved at the

global scale.

Last, we illustrated for regional precipitation over

Europe that a data-driven partitioning of the total

forced response into its dynamic and thermodynamic

components might be achieved via estimating 1) in-

ternal, high-pass-filtered circulation components (a total

forced response estimate is maintained as a residual),

and 2) the total contribution of circulation (forced

thermodynamic components are maintained as a re-

sidual). Our results illustrate that increases in northern

European winter precipitation are driven by thermo-

dynamical changes (i.e., a warming-induced increase

in the moisture-holding capacity of the atmosphere).

In contrast, projected twenty-first-century decreases in

Mediterranean winter precipitation are largely driven

by forced circulation changes, consistent with theoreti-

cal expectations and earlier studies (Seager et al. 2010;

He and Soden 2017; Kröner et al. 2017). The partitioning
method relies on the assumption that 1) the high-pass

filtering of the SLP field removes forced circulation

components, and 2) future changes in circulation pat-

terns project onto present-day patterns.

Overall, our study has shown that incorporating sta-

tistical learning techniques into dynamical adjustment

helps to better constrain the externally forced response

at local, regional, and global scale. We anticipate that

the methodology evaluated in this study might enable a

number of climate science applications.

An improved understanding and interpretation of

local or regional (hydro-) climatic variability, trends,

and their drivers could be achieved through application

to the observed record. Increased signal to noise in ob-

servations (and model simulations) will further reduce

uncertainties around internal climate variability and

benefit climate change detection and attribution. Our

results point at possible extensions of the dynamical

adjustment framework toward continental or global

scales, oceanic regions, and the possibility of adjusting

daily climate variability.

Furthermore, the methodology could enable an eval-

uation of forced versus internal components of climate

model simulations against observations, for instance, in

the context of CMIP6 (Eyring et al. 2016). This could

include evaluation of short-term responses such as those

induced by volcanic eruptions, or data-driven parti-

tioning of the total forced response into thermody-

namical and dynamical components.
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